News

Home page category

Sarah Porter Named Director of Kyl Center for Water Policy

January 7, 2015

Sarah Porter named inaugural director of Kyl Center for Water Policy at Morrison Institute

Following a national search, natural resource expert and Audubon leader Sarah Porter has been named the inaugural director of the new Kyl Center for Water Policy at Morrison Institute.

“I am so excited to join the new center and help it succeed in finding collaborative solutions to address our state’s water challenges,” said Porter, who had been with the Audubon Arizona since 2006, including as executive director since 2010.

She will begin her new job at Morrison Institute for Public Policy on Jan. 20.

“We couldn’t be more pleased with having Sarah take charge of the Kyl Center as Arizona seeks new and innovative ways and strategies to settle water claims, develop sound water policy through consensus and better educate the general public about water resources and choices,” said Thom Reilly, director of Morrison Institute for Public Policy at Arizona State University.

Porter has a broad understanding of both Arizona and regional water issues, having directed Audubon’s Western Rivers project, a multi-state initiative to raise awareness of the challenges to Colorado River sustainability, as well as protecting and restoring flows for critical habitats and communities.

“It’s all about securing Arizona’s water future through collective and inclusive input from a diverse roster of agency leaders, elected officials, policy makers and stakeholders. Sarah understands that,” Reilly said, noting Porter’s nonpartisan and collaborative successful initiatives at Audubon.

The Kyl Center, named after retired U.S. Sen. Jon Kyl in recognition of his statesmanship and continued leadership on water issues, was officially launched in November after a $1 million gift from the Morrison family. The Kyl Center is housed at Morrison Institute, which is part of the ASU College of Public Service and Community Solutions.

Kyl, who is actively involved in the center, including the selection process for the director post, said he was pleased by the choice of Porter.

“I was very impressed by the quality of all the candidates who expressed interest in the position, and particularly impressed by Sarah’s credentials, energy and dedication to collaboration – all of which are needed in making the center the success we all want and need it to be,” Kyl said.

Morrison Institute last month announced the addition of two senior research fellows to help with the research component of the Kyl Center for Water Policy: Kathleen Ferris, executive director of the Arizona Municipal Water Users Association; and Rhett B. Larson, an associate professor of law in the Sandra Day O’Connor College of Law at ASU. Both are attorneys.

Porter also is an attorney, having graduated from Harvard University with a bachelor’s degree and obtaining her juris doctor from Arizona State University (ranking third in her class). She clerked for federal appellate Judge William Canby and was a litigator for Brown & Bain; Coppersmith Gordon Schermer Owens & Nelson, PLC; and Osborn Maledon PA.

She said she left her law career in 2006 for Audubon because she wanted to contribute to a collaborative effort to address Arizona’s natural resource challenges. She will now dedicate that focus to the Kyl Center.

Arizona Water Challenge

Check out recent interviews with DCDC researchers Dave White and Ray Quay.

November 30, 2014

Phoenix Channel 12 News, Sunday Square Off with Brahm Resnick discusses Arizona’s water future with his panel including DCDC director, Dave White, policy analyst Jocelyn Gibbon, and 12 News’ Dr. Matt Pace.

Arizona Water Supply: How Worried Should You Be?

Amid a depleted water supply and a historic drought, will Arizona run short of water?

Phoenix Channel 12 News, Sunday Square Off with Brahm Resnick discusses Arizona’s water future with his panel including DCDC director, Dave White, policy analyst Jocelyn Gibbon, and 12 News’ Dr. Matt Pace.

Can Arizona Create Water: Why big ideas might not work

The water forecasters say Arizona’s water supply will run short of demand in the near future. The ‘Sunday Square Off’ panel debates whether the big ideas to create more water would really work.

Phoenix Channel 12 News, Sunday Square Off with Brahm Resnick discusses Arizona’s water future with his panel including DCDC director, Dave White, policy analyst Jocelyn Gibbon, and 12 News’ Dr. Matt Pace.

Arizona Water Challenge: Myths, reality of how to conserve.

The Sunday Square Off panel debate the myths and reality of how to conserve water in an era when supply won’t meet future demand.

SundaySquareOff_Nov30_2014

Phoenix Channel 12 News, Sunday Square Off with Brahm Resnick interviews former Arizona senator, Jon Kyl

Kyl on AZ water challenge: Get to work now

Resnick and Kyl discuss how the State must act now to ensure a sufficient water supply in the future.

November 20,2014

Steve Goldstein interviews Ray Quay on KJZZ.
The Role of Irrigation in Arizona

This week, Phoenix has been the host city for the Water Resource and Irrigation Conference. Irrigation has been a method for bringing water to Valley homes for decades.

Parched Cities Share Water in West

October 30, 2014 Parched Cities Share Water in the West by Jim Carlton of the Wall Street Journal. University access or subscription required.

A recent agreement by this city and Tucson, Ariz., highlights a growing trend in the drought-plagued Southwest: water agencies sharing resources to stretch limited supplies rather than going it alone.

Phoenix, which gets more water than it can store from the Colorado River, has agreed to send some of its surplus to Tucson, which needs it to lower pumping costs. In return, Tucson will give up part of its share of Colorado River water to Phoenix when needed. The deal finalized in early October comes despite long-standing rivalries between Arizona’s two largest cities.

“Any rivalry between Phoenix and Tucson is so 10 years ago,” Phoenix Mayor Greg Stanton said in an interview.

Water transfers between agencies have been picking up across the West in the wake of a drought that has ravaged the region for much of the past 15 years. During Texas’ severe drought in 2011, more than 1.7 million acre feet of water were transferred between users, compared with an average of 150,000 annually between 2007 and 2009, according to a 2012 report by the Western Governors Association and Western States Water Council. An acre foot is 326,000 gallons, or about the amount of water used by a family of four in a year.

In August, the Metropolitan Water District of Southern California agreed to send treated water to Sierra Madre, Calif., as part of a deal with the Upper San Gabriel Valley Municipal Water District to ease that city’s water shortage. Metropolitan, based in Los Angeles, will get repaid double what it sent in untreated water, as well as the right to buy water from the smaller agency though 2035.

“This is ushering in an era of cooperation where, typically in the past, each player has watched out and protected its own rights,” said Dave White, co-director of the Decision Center for a Desert City at Arizona State University in Tempe, Ariz.

Read the entire article at the Wall Street Journal. University access or subscription required.

See below for additional interviews regarding this agreement.

October 21, 2014

“Sustainability: Phoenix-Tucson Water Agreement.” Dave White interview on Arizona Horizon.

Program Description: Phoenix and Tucson have entered an agreement for Phoenix to store its excess Colorado River water in Tucson. The agreement is of mutual benefit to both cities. Arizona State University associate professor Dave White, who heads the Decision Center for a Desert City and studies water management decisions, will discuss the agreement.

Watch the Arizona Horizon interview with Dave White

October 3, 2014

Listen to DCDC director Dave White discuss the new water agreement between Phoenix and Tucson which could lead to similar arrangements between other Western cities, in response to drought conditions. Uncommon collaborations will be vital in the future.

Listen to Dave’s comments on KJZZ.

The Risks of Cheap Water

October 14, 2014 by Eduardo Porter of The New York Times.

This summer, California’s water authority declared that wasting water — hosing a sidewalk, for example — was a crime. Next door, in Nevada, Las Vegas has paid out $200 million over the last decade for homes and businesses to pull out their lawns.

DenverWater_2011CampaignIt will get worse. As climate change and population growth further stress the water supply from the drought-plagued West to the seemingly bottomless Great Lakes, states and municipalities are likely to impose increasingly draconian restrictions on water use.

Such efforts may be more effective than simply exhorting people to conserve. In August, for example, cities and towns in California consumed much less water — 27 billion gallons less —than in August last year.

But the proliferation of limits on water use will not solve the problem because regulations do nothing to address the main driver of the nation’s wanton consumption of water: its price.

“Most water problems are readily addressed with innovation,” said David G. Victor of the University of California, San Diego. “Getting the water price right to signal scarcity is crucially important.”

The signals today are way off. Water is far too cheap across most American cities and towns. But what’s worse is the way the United States quenches the thirst of farmers, who account for 80 percent of the nation’s water consumption and for whom water costs virtually nothing.

Adding to the challenges are the obstacles placed in the way of water trading. “Markets are essential to ensuring that water, when it’s scarce, can go to the most valuable uses,” said Barton H. Thompson, an expert on environmental resources at Stanford Law School. Without them, “the allocation of water is certainly arbitrary.”

Read the entire article at The New York Times.

Innovative Solutions for a Shrinking Water Supply

By Mariana Dale via The Republic | AZcentral.com on September 28, 2014

Water scarcity is one of Arizona’s most serious, ever-present problems.

Which is why students, researchers, professionals and creative thinkers are ­being challenged to raise awareness for an issue that the experts believe needs to be addressed now.

A $100,000 prize awaits the group that comes up with the most innovative ­campaign to push water scarcity into the forefront of public ­conversation.

lmarquez_LakePowell_LowWaterLevel_052914_500The Water Consciousness Challenge is the first phase of the New Arizona Prize offered by the Arizona Community Foundation in collaboration with The Arizona Republic and the Morrison Institute for Public Policy. Underwriting for the program comes from the Tashman Fund and the Lodestar Foundation.

The next phase of the competition will challenge entrepreneurs to create business-based solutions and products to reduce water use.

“The Valley has enjoyed water affluence for a long time because we had really great planning,” said Megan Brownell, chief business development and brand officer at the Arizona Community Foundation, a Phoenix-based philanthropic organization. “It’s now time to act so there won’t be a conflict in 20 to 30 years.”

The competition wants to create a public-service campaign that raises awareness about the challenges facing Arizona’s long-term water supply so residents will feel an urgency to start working on them now.

If Arizonans don’t change how they consume water and start brainstorming new solutions for dwindling supplies, shortages won’t be a choice, they will be an unavoidable reality. Planning for the future of water now will help ensure there is enough water for future generations, Brownell said.

The message isn’t new; it has been taught with puppets, posters, television spots, brochures and landscape-design classes for years.

But experts, researchers and industry workers agree that as long as taps gush clear,drinkable water, it’s hard to keep water scarcity part of public conversation.

“One challenge is getting people to take ownership of their decisions and how they contribute to the demand side of the equation,” said Dave White, co-director of Arizona State University’s Decision Center for a Desert City, which studies water use and sustainability.

Continue reading at The Republic | AZcentral.com.

Dave White Lecture at Global Institute for Water Security

Dave White was invited to speak as a distinguished lecturer at the University of Saskatchewan’s Breakthroughs in Water Security Research: The Global Institute for Water Security Distinguished Lecture Series on Wednesday, September 24, 2014.

Date: Wednesday, September 24, 2014
Time: 3:00pm in Arizona
Location: Neatby-Timlin Theatre, Arts 241, University of Saskatchewan
View the lecture: http://www.youtube.com/watch?v=TAwyv3KhAjQ

Lecture Title

Envisioning the future of water governance: Linking decision-maker preferences, simulation modelling and scenario analysis to inform sustainability transitions.”

Talk Abstract

DLSWhite Sept 24_225

The coupled effects of global climate change and population dynamics on water systems are widely considered to be among the greatest urban sustainability challenges facing humanity in the Anthropocene. Climate change impacts, including rising temperatures, changes in the amount and timing of local precipitation, and increased variability will very likely reduce renewable surface and groundwater supplies and diminish raw water quality, leading to widespread but uneven risks. Semiarid and arid regions will be particularly vulnerable. Meanwhile, the world’s urban population is projected to double in the next generation and much of this urban growth will occur in arid or semiarid environments. Climate impacts will amplify existing vulnerabilities in water-scare urban regions associated with inherent variability, cyclical drought, and extreme heat. Furthermore, the projected biophysical impacts of climate change are conditioned by and interact with land use changes, population dynamics, economic development, and water management decisions. Indeed, the non-climatic stressors on water resources may outweigh the climate impacts for some regions. Taken together, these interrelated pressures pose unprecedented challenges for urban sustainability. To address these challenges, there are growing number of scholars, policy-makers, and interest groups calling for transformational solutions to enable a transition towards urban water sustainability. An essential task for such transitions is to envision a sustainable future for water governance.

He will highlight recent research that utilizes a participatory, mixed-method approach, including survey questionnaire, scenario analysis, and simulation modeling, to construct distinct, coherent, plausible, and desirable governance scenarios of the Phoenix, Arizona USA region in 2030. Four scenarios provide stakeholders and policy makers with distinct options for future water governance regimes, while the approach integrates normative values and preferences with dynamic models to inform sustainable policy making. The first scenario, Technical Management for Megapolitan Development, based on the stakeholder survey, describes a future in which water experts negotiate and acquire more water so Phoenix can continue to grow. The second scenario, Citizen Councils Pursue Comprehensive Sustainability, was selected using the sustainability appraisal. This scenario describes a future where watershed-like councils use policy instruments to reduce water use as part of a comprehensive approach to sustainability that includes integrated policy making for water, energy, food, and urban planning. Experts Manage Limited Water for Unlimited Growth is the third scenario, selected using plausibility indications, and describes a future where water experts struggle to provide for a growing population without restricting water use or acquiring new water sources. Water governance reflects a classic “muddling through” approach. The final scenario, Collaborative Governance Prioritizes Local Water Security, selected using the water security governance analysis, is a future in which water is very central to decision making. In this scenario, committees of water managers, scientists and citizens collaborate to secure water and reduce consumption to ensure the long-term viability of the metropolitan region.

Each of the four scenarios was input into WaterSim 5.0 to determine their systemic impacts under different climate scenarios. The suite of models resulted in 270 separate model runs for the 75 year simulation period for each of the 33 water utilities and the four constructed synthetic scenarios plus one base scenario.

Our approach then allows for normative scenarios to interface with a dynamic simulation model, which during stakeholder engagement activities can provide feedback to participants on the impacts of their priorities, particularly on the availability of surface and groundwater for future generations and the distribution of burdens and benefits of water and water governance. Stakeholders can then modify or dictate preconditions for their priorities and, if necessary, select new scenarios. This type of iteration and feedback with differing levels of stakeholder involvement is critical in transdisciplinary research generally and for participatory scenarios that inform transitions in particular.

The scenarios in this study can be considered boundary objects, which allow for knowledge exchange between different actors related to their opinions, values, and preferences regarding all or parts of the water system. In this capacity, the scenarios present different water governance regimes with different power arrangements in a way that is comprehensible to broad audiences. For the Phoenix region, the scenarios can also facilitate conversations with other regions about water governance. Bounding the governance regime to the Phoenix region is a necessity of the scenario construction process that does not necessarily reflect the governance or hydrological reality. In the future, Phoenix will be negotiating for water with other state and regional actors, particularly those with rights to the Colorado River. By selecting a scenario to guide transition activities, Phoenix will have a boundary object with which to communicate its priorities to its partners on the Colorado River. Such efforts could contribute to further coordination of sustainable water governance across the Southwest.

World Water Monitoring Day

via EPA

Did you ever stop to wonder how we get our information on the condition of our Nation’s streams, lakes, estuaries, and coastal waters? Or whether these waters are safe enough to swim in, fish from, or use for drinking or irrigation purposes? Monitoring provides this basic information.

lmarquez_riparianSunriseThe responsibility to monitor water quality rests with many different organizations. States and federal agencies have leading monitoring roles. Utilities, universities, watershed organizations and even individual citizens also monitor chemical, physical, and biological conditions in our waters.

World Water Monitoring Day is an international education and outreach program that builds public awareness of the importance of protecting water resources around the world by engaging people to conduct basic monitoring of their local water bodies.

World Water Monitoring Day is officially celebrated on September 18, but monitoring and educational events can take place any time between March 22 and December 31. During this time, people of all ages throughout the world community will have an opportunity to monitor the quality of their local watersheds and enter the results of their efforts into an international database. Simple monitoring kits are available for purchase by anyone interested in participating. These kits can be ordered at any time. For more information, visit World Water Monitoring Day.

In Arizona, the Arizona Department of Water Resources (ADWR) is tasked with providing stewardship of the State’s precious and limited groundwater resources through active management and enforcement of the Arizona Groundwater Code. The Department’s Hydrology Division engages in a wide variety of data collection activities in support of public needs, such as the Assured and Adequate Water Supply and Recharge Programs, Drought Monitoring Program, well drilling and well impact assessments, and in support of hydrologic studies such as groundwater modeling and water budget development.

There is a continuing need to provide better hydrologic data in many parts of the State and to devote more attention to ensuring that activities are coordinated so that the information gathered and products produced are made widely available within the Department and to the public. This will ensure that pertinent and recent data and results are used whenever possible, reduce redundancy, and increase communication.

There is also a need to collect additional data in areas of the state subject to rapid change, such as developing areas or areas sensitive to change. To these ends, the Department has formed an internal Hydrologic Monitoring Committee to review our data collection activities, adjust the activities to meet program needs (reaching Active Management Area (AMA) goals such as safe yield, development of groundwater water budgets, and models), and to ensure a proper flow of information within the Department and between the Department and outside agencies and the public.

The Department currently collects data concerning:

  • Groundwater levels
  • Groundwater use in AMAs and INAs
  • Spring locations and surface water diversion points
  • Crop types and uses
  • Land subsidence
  • Gravity changes and aquifer storage changes
  • Aquifer water quality

Many of these activities are concentrated within the Active Management Areas of the state, as called for by the Groundwater Code. Recently, the Department has focused more attention in the rural areas of the state in recognition of rapid planned development in those areas and to support the Rural Water Shed Initiative, the statewide drought monitoring program, and the adjudication process underway in the Gila and Little Colorado River watersheds.

Check out the History of Water Management in Arizona.

Satellite Study Reveals Parched U.S. West Using Up Underground Water

July 24, 2014 via NASA

A new study by NASA and University of California, Irvine, scientists finds more than 75 percent of the water loss in the drought-stricken Colorado River Basin since late 2004 came from underground resources. The extent of groundwater loss may pose a greater threat to the water supply of the western United States than previously thought.

This study is the first to quantify the amount that groundwater contributes to the water needs of western states. According to the U.S. Bureau of Reclamation, the federal water management agency, the basin has been suffering from prolonged, severe drought since 2000 and has experienced the driest 14-year period in the last hundred years.

The Colorado River Basin lost nearly 53 million acre feet of freshwater over the past nine years, according to a new study based on data from NASA’s GRACE mission. This is almost double the volume of the nation's largest reservoir, Nevada's Lake Mead. Image Credit: U.S. Bureau of Reclamation
The Colorado River Basin lost nearly 53 million acre feet of freshwater over the past nine years, according to a new study based on data from NASA’s GRACE mission. This is almost double the volume of the nation’s largest reservoir, Nevada’s Lake Mead.
Image Credit: U.S. Bureau of Reclamation
The research team used data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission to track changes in the mass of the Colorado River Basin, which are related to changes in water amount on and below the surface. Monthly measurements of the change in water mass from December 2004 to November 2013 revealed the basin lost nearly 53 million acre feet (65 cubic kilometers) of freshwater, almost double the volume of the nation’s largest reservoir, Nevada’s Lake Mead. More than three-quarters of the total — about 41 million acre feet (50 cubic kilometers) — was from groundwater.

“We don’t know exactly how much groundwater we have left, so we don’t know when we’re going to run out,” said Stephanie Castle, a water resources specialist at the University of California, Irvine, and the study’s lead author. “This is a lot of water to lose. We thought that the picture could be pretty bad, but this was shocking.”

Water above ground in the basin’s rivers and lakes is managed by the U.S. Bureau of Reclamation, and its losses are documented. Pumping from underground aquifers is regulated by individual states and is often not well documented.

“There’s only one way to put together a very large-area study like this, and that is with satellites,” said senior author Jay Famiglietti, senior water cycle scientist at JPL on leave from UC Irvine, where he is an Earth system science professor. “There’s just not enough information available from well data to put together a consistent, basin-wide picture.”

Famiglietti said GRACE is like having a giant scale in the sky. Within a given region, the change in mass due to rising or falling water reserves influences the strength of the local gravitational attraction. By periodically measuring gravity regionally, GRACE reveals how much a region’s water storage changes over time.

The Colorado River is the only major river in the southwestern United States. Its basin supplies water to about 40 million people in seven states, as well as irrigating roughly four million acres of farmland.

“The Colorado River Basin is the water lifeline of the western United States,” said Famiglietti. “With Lake Mead at its lowest level ever, we wanted to explore whether the basin, like most other regions around the world, was relying on groundwater to make up for the limited surface-water supply. We found a surprisingly high and long-term reliance on groundwater to bridge the gap between supply and demand.”

Famiglietti noted that the rapid depletion rate will compound the problem of short supply by leading to further declines in streamflow in the Colorado River.

“Combined with declining snowpack and population growth, this will likely threaten the long-term ability of the basin to meet its water allocation commitments to the seven basin states and to Mexico,” Famiglietti said.

The study has been accepted for publication in the journal Geophysical Research Letters, which posted the manuscript online Thursday. Coauthors included other scientists from NASA’s Goddard Space Flight Center, Greenbelt, Maryland, and the National Center for Atmospheric Research, Boulder, Colorado. The research was funded by NASA and the University of California.

Read the original article at NASA.

For more information on NASA’s GRACE satellite mission, see:

http://www.nasa.gov/grace

and

http://www.csr.utexas.edu/grace

GRACE is a joint mission with the German Aerospace Center and the German Research Center for Geosciences, in partnership with the University of Texas at Austin. JPL developed the GRACE spacecraft and manages the mission for NASA’s Science Mission Directorate, Washington.

NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

To learn more about NASA’s Earth science activities in 2014, visit:

http://www.nasa.gov/earthrightnow

Steve Cole
Headquarters, Washington
202-358-0918
stephen.e.cole@nasa.gov

Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
Alan.Buis@jpl.nasa.gov

Janet Wilson
University of California, Irvine
949-824-3969
janet.wilson@uci.edu

City of Phoenix Cool Urban Spaces Project

City of Phoenix Cool Urban Spaces Project

Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix

Prepared by the Center for Integrated Solutions to Climate Challenges at Arizona State University in collaboration with the Climate Assessment for the Southwest (CLIMAS) at the University of Arizona and Decision Center for a Desert City (DCDC).

Executive Summary

The City of Phoenix’s Cool Urban Spaces Report (2014) investigated the impact of the Phoenix Cool Roofs and Tree and Shade Master Plan initiatives on the city. The study evaluated how these heat mitigation efforts affect microclimates and human thermal comfort in the Phoenix metropolitan area. These findings are especially relevant as rapid and extensive urbanization has led to an urban heat island (UHI) effect that has increased steadily at approximately 0.9°F per decade.

NOAA PHX UrbanSpaces RepThe city’s questions guiding this research were:

  1. What are the cooling benefits achieved by increasing tree canopy from 10% (current) to 25% (2030 goal) and/or implementing cool roofs under existing conditions and projected warming?
  2. What is the diurnal thermal benefit of tree canopy shade for a typical heat wave day during premonsoon summer?

The impacts of cool roofs and trees on near-ground air temperatures were modeled through 54 scenarios for a typical residential neighborhood in Phoenix. We ran the model for a combination of three treeplanting scenarios (no trees, current canopy cover and 2030 canopy goal) and three landscaping scenarios (mesic, oasis and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections.

Two significant results of the tree and shade initiative are: (1)increasing tree canopy cover to 25% leads to an additional temperature reduction of 4.3°F, which is a total cooling benefit of 7.9°F as compared to a bare neighborhood, and 2) switching landscaping from xeric to oasis, i.e., adding grass patches to residential backyards, reduces average neighborhood temperatures by 0.4°F to 0.5°F.

The scenario with the lowest air temperatures is the residential neighborhood with mesic landscaping, 25% tree canopy cover and cool roofs under current climate conditions with an average neighborhood temperature of 99.5°F. In contrast, the xeric neighborhood with no tree cover and regular roofs under the high-emissions climate change scenario is the hottest. This indicates that the combination of increased tree canopy cover and cool roofs does lower temperatures as well as reduce the demand for air conditioning, thereby reducing anthropogenic heat. However, trees and cool roofs are only part of the solution and need to be included in a broader, more comprehensive mitigation and adaptation plan.

Across all climate and tree scenarios, the effect of cool roofs alone on local daytime temperatures is relatively low. Air temperature reduction only amounts to 0.5°F in the neighborhood. Regarding the city’s cool roofs initiative, results show little benefit for extending this project to commercial and residential properties based on its cooling impacts alone.

Our research thus far indicates that there is no simple solution to mitigating the UHI, but a complex balance of strategies will be necessary so that efforts to lower the daytime temperatures do not increase nighttime temperatures or shift UHI impacts to more vulnerable populations.

Introduction

The Center for Integrated Solutions to Climate Challenges and Decision Center for a Desert City (DCDC) at ASU, along with Climate Assessment for the Southwest (CLIMAS) at the University of Arizona, through a NOAA-funded grant, convened a workshop with urban managers and practitioners in October 2012. One goal of the workshop was to provide useful, state-of-the-art climate knowledge to encourage the use of climate science in longrange decision processes. Another was to provide opportunities for working with urban managers and planners to develop tangible products and/or processes that will enable the incorporation of this information into their unique planning documents and policies. Attendees were asked to develop project proposals for tractable, city-specific adaptation projects on behalf of their municipality. Three proposals were chosen for funding: Tucson, Flagstaff and Phoenix. The City of Phoenix asked for support in assessing the impact of their urban forestry and cool roofs initiatives on projected heat increases and the urban heat island (UHI).

In Phoenix, rapid and extensive urbanization has led to an UHI in the metropolitan area that has increased steadily at approximately 0.9°F (0.5°C) per decade. A time-trend analysis of Phoenix Sky Harbor air temperatures showed nighttime temperature differences between rural and urban areas of up to 11°F (6°C) in the summer (Brazel et al., 2000). Winter mobile transect observations in Phoenix found a UHI intensity of 14°F (8°C) (Sun et al., 2009), and a study in the spring observed an average UHI intensity of 17°F to 23°F (9.4°C to 12.9°C) (Hawkins et al., 2004). Discussions with Philip McNeely, the city’s Environmental Program Manager; Richard Adkins, Phoenix Parks and Recreation Department’s Forestry Supervisor; and a number of ASU researchers provided insight into the current activities being undertaken by the city to mitigate heat. Among these were their green building and urban forestry initiatives.

The stakeholder questions coming from the activities guiding this research were:

  1. What are the cooling benefits achieved by increasing tree canopy from 10% (current) to 25% (2030 goal) and/or implementing cool roofs, under existing conditions and projected warming?
  2. What is the diurnal thermal benefit of tree canopy shade for a typical heat wave day during premonsoon summer?

This study used micro-scale modeling, hourly meteorological observations and a research synthesis workshop with UHI experts from ASU to help inform the City of Phoenix’s green building and urban forestry initiatives. Initial results were presented to the City of Phoenix in late 2013.

Download the report.

New DCDC Publication

Assessing the sustainability of water governance systems: the sustainability wheel

Published online in the Journal of Environmental Planning and Management on July 11, 2014.

Authors

Flurina Schneider (a,b,e), Mariano Bonriposi (d), Olivier Graefe (c), Karl Herwega (a), Christine Homewood (c), Matthias Huss (c), Martina Kauzlaric (b), Hanspeter Liniger (a), Emmanuel Rey (b), Emmanuel Reynard (d), Stephan Rist (a), Bruno Schädler (b) & Rolf Weingartner (b)

Affiliations
a Centre for Development and Environment, University of Bern, Bern, Switzerland
b Department of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
c Geography Unit, Department of Geosciences, University of Fribourg, Fribourg, Switzerland
d Institute of Geography and Sustainability, University of Lausanne, Géopolis, Lausanne, Switzerland
e Decision Center for a Desert City, Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA

Flurina Schneider is a visiting scholar at Arizona State University, where she is affiliated with the School of Flurina SchneiderSustainability and Decision Center for a Desert City of the Julie Ann Wrigley Global Institute of Sustainability. She holds a PhD in human geography from the University of Bern, Switzerland. Schneider has conducted research on sustainable governance of water and land in Switzerland, Germany and Chile, focusing on multiple stakeholders’ perspectives and values, processes of transdisciplinary knowledge, co-creation through social learning and network building, as well as on issues of power and social justice.

Dr. Schneider is currently the scientific coordinator of the MontanAqua project, which develops strategies for moving towards more sustainable management of water resources in the Alps (Swiss National Science Foundation, Sustainable water management (NRP61)). Within this program, she also has the lead role in two synthesis projects concerning the development of principles of sustainable water use in Switzerland as well as the analysis of potentials and limitations of transdisciplinary knowledge production in research projects of the NFP61.

Abstract

We present and test a conceptual and methodological approach for interdisciplinary sustainability assessments of water governance systems based on what we call the sustainability wheel. The approach combines transparent identification of sustainability principles, their regional contextualization through sub-principles (indicators), and the scoring of these indicators through deliberative dialogue within an interdisciplinary team of researchers, taking into account their various qualitative and quantitative research results. The approach was applied to a sustainability assessment of a complex water governance system in the Swiss Alps. We conclude that the applied approach is advantageous for structuring complex and heterogeneous knowledge, gaining a holistic and comprehensive perspective on water sustainability, and communicating this perspective to stakeholders.

Introduction

In Switzerland, as in many other parts of the world, there is increasing concern that water shortage problems might become more frequent. Consequently, many research and policy efforts focus on issues of more sustainable water governance. However, there are few holistic approaches, which evaluate the sustainability of water governance systems based on comprehensive, interdisciplinary assessments (Reed and Kasprzyk 2009; Wiek and Larson 2012). Most frameworks emphasize singular aspects such as quality and supply of freshwater resources (Kondratyev et al. 2002), infrastructure, adaptive capacity (Hill 2013), or social learning (Pahl-Wostl 2006; Pahl-Wostl et al. 2007). Moreover, studies that investigate the sustainability of water governance systems from holistic perspectives (Larson, Wiek, and Withycombe Keeler 2013) primarily focus on the present situation without in-depth assessments of possible future developments.

A holistic framework for the analysis of sustainable water governance systems is proposed by Wiek and Larson (2012). Their framework combines a systemic understanding of the water governance system and its evaluation through a set of sustainability principles. They stress the importance of justifying the normative claims in the system analysis with a transparent set of value laden sustainability principles.

Another approach that is commonly chosen to evaluate water governance sustainability from an interdisciplinary perspective is the application of indicators (Sullivan and Meigh 2007; Valenzuela Montes and Matarán Ruiz 2008; Ioris, Hunter, and Walker 2008; Babel et al. 2011; Lachavanne and Juge 2009 ). The great advantage of indicators is that they provide a reasonably simple tool to combine biophysical and socioeconomic information (Sullivan and Meigh 2007), and allow the reflection and communication of complex ideas by condensing their multifaceted nature into a manageable amount of meaningful information (Babel et al. 2011), yielding good learning opportunities (Ioris, Hunter, and Walker 2008). However, they also have limitations; quantitative indicators often require (over)simplifying complex and dynamic water governance systems (Ioris, Hunter, and Walker 2008). Consequently, aspects that are hard to measure, or hard to quantify, such as informal governance practices, are neglected (e.g. Lachavanne and Juge 2009 ). Furthermore, gaps in data often limit the applicability and information value for different case study areas.

Schneider Figure 3Against this background, our goal is to present a conceptual and methodological approach for an interdisciplinary sustainability assessment for water governance systems – based on what we call the sustainability wheel – and its application in the Crans-Montana-Sierre region of Switzerland, the case study area of the MontanAqua project (Weingartner et al. 2010). For this purpose, we took the basic ideas of the two approaches described above and combined them in a way that would allow the evaluation of the water governance system through a comprehensive, interdisciplinary assessment.

In this article, we use the term water governance system in a broad sense. Water governance systems are understood to include social practices and institutions, as well as biophysical aspects and processes. When using the term water resource systems, we only refer to the biophysical aspects and processes.

Download the entire article.